multiplicative property of inequalities

multiplicative property of inequalities

Multiplicative property of inequalities, For all number    a,     b,    c,   d   (maybe any numeric number 2, 3, 4,   5) is a part (∈) of real number (R). We divide multiplicative property of inequalities in three part   and discuss one by one.

multiplicative property of inequalities

(a) multiplicative property of inequalities

∀  a, b, c  ∈   R    and   c  >  o

When number a greater than number b and third number c greater than zero, then the property of inequalities

(i)  a >  b    this implies that a c >  b c 

 Addition and multiplication laws of real number?

(ii)  a  <  b    this implies that a c <  b c

EXAMPLE:

∀  5,   3,    4  ∈   R    and   4  >  o

 associative property of real number ???????

We have numbers,    a = 5,    b=   3 and third number c  =  4 greater than zero, then the property of inequalities

(i)  5 >  3    this implies that 5  ×  4 >  3  ×  4

20    >    12

(ii)  a  <  b    this implies that a c <  b c

if numbers a = 3,    b  =   5 and c  =  4

3  <   5    this implies that 3  ×  4  <   5 ×  4

12  <   20

(b)  ∀  a, b, c is a part of real number and c < 0 

(i)  a >  b    this implies that a c   <    b c

(ii)  a  <  b    this implies that a c   >   b c

EXAMPLE:

We have numbed a = 5,    b = 4 and c  =   –  2   then condition

(i)

5   >  4 this implies that 5 ×  -2   <  4 ×  -2

-10       <     -8         (proved)

EXAMPLE:          power of iota    ?

We have numbered a = 5,    b = 6 and c  =   –  2   then condition (ii)

5   <  6 this implies that 5 ×  -2   >   6  ×  -2

-10       >     – 12         (proved)

(C)  ∀ a, b, c, d is a part of real number, and   a,   b,   c,   d are all positive

(i)     a   >  b and   c   >  d      this implies that a c   >   b d

(ii)     a   <  b and   c   <  d      this implies that a c   <   b d

EXAMPLE:              branches of curve of hyperbola     ???????

If     3,     4,    5,    6   is a real numbers then condition (i)

3  >  4     and   5   >   6   this implies that   3  ×  5   >    4  ×  6

15   >   24     proved

EXAMPLE:

If we have real number a  =  5, b =  4,   c  =   3   and d  =   2 then condition (ii)

5   <  4   and    3   <   2      this implies that 5  ×  3    <   4  ×  2

15    <    8   proved

RELATED POST: