Trigonometric function of acute angle of any size

Trigonometric function of acute angle

Trigonometric function of acute angle of any size:Consider a right triangle ABC with m ∠ C = 90º and sides a, b, c we write ∠ A opposite side name a and the ∠ B opposite side name b and more the ∠ C opposite side name c.

Trigonometric function of any size :

As, values of trigonometric function depend only on the angle and not on the size of the triangle. We can take any size of triangle.

When m ∠ A = 45º = π / 4 radians

Trigonometric function of acute angle

then

m ∠ B = 45º

this implies that Δ ABC is right isosceles triangle(مساوی الساقین مثلث)

Take size of triangle a = b = 3

By Pythagoras theorem:

a² + b² = c ²

putting the values

we get

(3)² + (3)² = c ²

9+ 9  = c ²

18 = c ²

Taking square root on both side

√3 ×3×2 = c ²

3 √ 2 = c ²

it is cleared the value of c

c = 3 √ 2,     a = 3,     b = 3

 

sin 45º =  a /  c  =  3 / 3 √2

Hence

 sin 45º = 1 / √2 reciprocal of sin   cosecant 45º= √2

this is proved the value of the trigonometry function only depend on angle, not triangle size.

Trigonometry function of 60 degree:

when m ∠ A = 60º = π / 3 radians, then m ∠ B = 30 º

By elementary geometry, in a right triangle, the measure of the side opposite to 30 º is half (نصف)of the hypotenuse (وتر).

Let take any value c= 2 then b = 1

By Pythagoras theorem:

a² + b² = c ²

this implies that a² + (1)² = (2) ²

a² = (2) ²- (1)²

a² = 4- 1

taking square root on both side

 a  =  √3,   b =  1,   c = 2 

Sin, cos and tan angle on 60 degree

(1) Sin 60° =  a / c = √ 3 / 2

reciprocal

cosecant 60º = 1 / Sin 60°= 2 / √3

(2)  cos 60° =  b / c = 1 / 2 

reciprocal

sec 60º = 1 / cos 60°= 2

(3) tan 60° =  a / b = √ 3 

reciprocal

Tan 60º = 1 / Tan 60°= 1 / √3

Trigonometry function of 30 degree:

Trigonometric function of acute angle of any size

When m  ∠ A = 30º= π / 6 radians

then

m ∠ B = 60º

By definition of elementary geometry, in a right angle triangle the measure of the side opposite (برعکس) to 30 º is a half of the hypotenuse.

Let c = 2 then a = 1

by Pythagoras theorem

a² + b² = c ²

 b² = c ²  –

=   4 – 1

      = 3

    b²   = √ 3

now we have the value of a = 1, b = √ 3, c = 2

Sin, cos and tan angle on 30 degree:

(1) Sin 30° =  a / c = 1 / 2

reciprocal Angle of sin

cosecant 30 º = 1 / Sin 30°= 2

(2)  cos 30° =  b / c = √ 3 / 2 

reciprocal Angle cos

sec 30 º = 1 / cos 30 °= 2 / √ 3

(3) tan 30° =  a / b = 1 /√ 3 

reciprocal angle tan

cot 30° = 1/ tan 30 º  = √ 3

RELATED POST: 

Trigonometric Function of any Angle

Initial side and terminal side angle