properties of binary operation

binary operation associative property

properties of binary operation:Suppose that S be a non empty set And   ∗  (read star) be a binary operation on set S ( means set S is closed with rest to   ∗   ) Then ∗ may verify the following properties.

Suppose set S = { 1,7, 9} On this set we apply the following properties

a  = 1 ,  b = 7 ,    c  = 9

  •    Commutative property

If for all  a, b  ∈  S  (∀  a, b is a part of S)

this implies that ( ⇒ )

a ∗ b = b ∗ a

Then   ∗  is commutative in S.

EXAMPLE:

1 ∗ 7 = 7∗ 1

7 =  7

Hence verified.

  • Associative property 

If for all  a, b , c   ∈  S  (∀  a, b,c is a part of S)

this implies that ( ⇒ )

a ∗  ( b ∗ c )=   ( a  ∗ b ) ∗ c

Then   ∗  is Associative  in S.

binary operation associative property

EXAMPLE:

a ∗  ( b ∗ c )=   ( a  ∗ b ) ∗ c

1 ∗  ( 7 ∗ 9 )=   ( 1  ∗ 7 ) ∗ 9

63 = 63

Hence verified.

  • Identity property 

If for all  a   ∈  S  (∀  a  is a part of S)

there exist e ∈ S  ( e is a part of S)

Such that

a ∗  e =   e  ∗  a

a = a

Then e is called identity    w . r . t     ∗  ( binary operation )

EXAMPLE:

a ∗  e =   e  ∗  a

1 ∗  1 =   1  ∗  1

1   = 1

Hence verified.

  • Inverse  property

If for all  a   ∈  S   (∀  a  is a part of S)

there exist a’ ∈ S  ( inverse of a  is a part of set S)

such that

a ∗  a’=   a’  ∗  a

e       =   e

Then a’ ( inverse of a ) is called inverse of a with respect to

∗  ( binary operation).

EXAMPLE:

7 ∗  1/7 =   1/7  ∗  7

1  =   1 

1   = 1

Hence verified.

RELATED POST:

Cartesian product of two set

Reversal law of inverse

power set of empty set

Set builder notation Example

 

Leave a Reply

Your email address will not be published. Required fields are marked *