Trigonometric identities of any real number theta

Trigonometric identities of any real number theta

Trigonometric identities of any real number theta:For any real number theta (θ) we shall derive the following fundamental identities.

Trigonometric identities of any real number theta

(1) sin²θ + cos² θ = 1

(2) 1 + tan² θ = sec² θ

(3) 1 + cot² θ = csc ² θ

Trigonometric identities of any real number theta:

Proof : 1

From right angle triangle ABC by Pythagoras theorem, we know that

a² + b² = c²

by dividing both side, we get

a² / c² + b² /c²  = c² / c²

(a / c)²+ (b /c)²  = (c / c)²

(sin θ)²+ (cos θ)²  = 1

we can write

sin² θ+ cos² θ  = 1

Proof : 2

From right angle triangle ABC by Pythagoras theorem, we know that

a² + b² = c²

by dividing both side, we get

a² / b² + b² /b²  = c² / b²

(a / c)²+ (b /b)²  = (c / b)²

(tan θ)²+ 1  = (sec θ)²

we can write

tan² θ+ 1 = sec² θ 

Proof : 3

From right angle triangle ABC by Pythagoras theorem, we know that

a² + b² = c²

by dividing both side, we get

a² / a² + b² /a²  = c² / a²

(a / a)²+ (b /a)²  = (c / a)²

1+ (cot θ)²  = (sin θ)²

we can write

1+ cot² θ  = cosec² θ

RELATED POST: