Quadrant Laws of trigonometric ratio

Quadrant Laws of trigonometric

Quadrant Laws of trigonometric ratio: (1) If theta (θ) is added to or subtracted from odd multiple of right angle means      (π /2 angle) the trigonometric ratio change into co- ratio and vice versa.

Quadrant Laws of trigonometric

sin\rightleftharpoons cos,\, \, tan\rightleftharpoons cot,sec\rightleftharpoons cosec

For example

Sin (π /2-θ)= cos θ    and cos(3 π /2+ θ) = Sin θ

(2) If θ added to or subtracted from an even multiple of π /2, the Trigonometric ratio shall remain the same.

(3) So far as the sign of the results is concerned, it is determined by the quadrant in which the terminal arm of the angle lies.

For example:

Sin (π – θ)= cos θ,      tan(π + θ) = tan θ,      cos(2 π – θ) = cos θ

Odd multiple of π / 2 in sin angle

Sin (π /2-θ),   Sin (π /2+θ),    Sin (3π /2-θ)    and    Sin (3π /2+θ) are odd multiple of π / 2 are involved.

Therefore

sin will change into cos

Terminal side in quadrant 1 (π /2-θ)

Sin (π /2-θ) = cos θ

Terminal side in quadrant 2 (π /2+θ)

Sin (π /2+θ) = cos θ

Terminal side in quadrant 3 (3π /2 – θ)

Sin (π /2- θ) = – cos θ

Terminal side in quadrant 3 (3π /2 + θ)

Sin (3π /2+ θ) = – cos θ

Even multiple of π / 2 in cos angle

cos (π -θ),   cos (π+θ),    cos (2π -θ)    and    cos (2π +θ)

cos will remain cos

Quadrant wise

Terminal side in quadrant 2: (π -θ)

cos (π -θ) = – cos θ

Terminal side in quadrant 3 🙁π+θ)

cos (π +θ) = – cos θ

Terminal side in quadrant 4: (2π  – θ)

cos (2π -θ) =  cos θ

Terminal side in quadrant 1: (2π+θ)

cos (2π +θ) =  cos θ

RELATED POST:

Trigonometric Function of any Angle

Gradient of a line