Associative property of complex number

associative property of complex number

Associative property of complex number addition, multiplication, negation, division verify or not verify on addition, multiplication, negation, and division. If we have three complex numbers z ₁  =  a+ι b,    z ₂=c + ι d, and    z ₃=e+ι f then the association of these three complex number hold or not hold we separately check one by one

associative property of complex number

Association of complex number Addition:

Z ₁+(Z ₂ + Z ₃) = (Z ₂ + Z ₃) + Z ₁……………………… A

putting the value of

z ₁  =  a+ι b, 

 z ₂=c + ι d,

and

    z ₃=e+ι f

In Equation A

a+ι b +(c + ι d  + e+ι f) = (a+ι b +c + ι d) + e+ι f

a+ι b +c + ι d  + e+ι f = a+ι b +c + ι d + e+ι f

Association of complex number Addition example

For example: if we take three numeric complex

z ₁  = 6+7ι

z ₂= 4+9Ι

and

z ₃= 1+8Ι

Putting these complex number values in A

6+7ι +(4+9Ι + 1+8Ι) = (6+7ι +4+9Ι)+ 1+8Ι 

6+7ι +(5+17Ι) =  (10 +16Ι) + 1+8Ι 

11 +24ι = 11+ 24 Ι

This is clearly showing that association of three complex number addition hold.

Association of complex number multiplication:

Z ₁×(Z ₂ × Z ₃) = (Z ₂ × Z ₃) × Z ₁……………………… B

z ₁  =  a+ι b, 

  z ₂=c + ι d,

and

    z ₃=e+ι f

In Equation B

a+ι b ×{(c + ι d)  ×(e+ι f)} ={(a+ι b) × (c + ι d)} ×(e+ι f)

We know that direct multiplication rule of complex number

a+ι b ×(c e –  d f+ ι c f+ι d e)  =( a c -b d +ι  ad + ι b c) × (e+ι f)

Again, multiplication of complex number in two sides

a c e -a d f +ι a c f + ι a d e + ι b c e – ι b d f – b c f – b d e = a c e – b d e + ι a d e +ι b c e + ι a c f – ι b d f – a d f – b c f

a c e -a d f – b c f – b d e +ι a c f + ι a d e + ι b c e – ι b d f = a c e – a d f – b c f- b d e+ ι a d e +ι b c e + ι a c f – ι b d f

Hence, two sides are equal association of multiplication hold

RELATED POST