Addition and multiplication laws of real number

Addition and multiplication laws of real number

Addition and multiplication laws of real number

(1) Addition Laws of real number

(i) Closure Law of addition 

∀   a,  b  ∈   R   (for all a,    b is   a part of real number)

such that

∀   a   +  b  ∈   R   (for all a  +    b is   a part of real number)

(ii) Associative Law of Addition 

∀   a,  b,   c  ∈   R   (for all a,   b,    c   is   a part of real number)

Such that 

a   +   (b     +    c)   = (a   +   b)     +    c

(iii) Additive identity

∀    a    ∈     R   And ∃  (there exist) 0  ∈   R 

Such that 

a   +0   =    0   +   a    =    a

(iv) Additive Inverse 

∀  a    ∈     R   And ∃  (there exist) –   a  ∈   R  

Such That 

 a   +    (-a)     =   0   =  (-    a)  +  a 

(v) commutative Law   of Addition

∀   a,  b  ∈   R   (for all a,   b is   a part of real number)

Such that

a   +   b  =    b    +  a 

Addition and multiplication laws of real number

(2) Multiplicative Law of  Real number

(i)  Closure Law multiplication

∀   a,  b  ∈   R   (for all a,    b “is  a part” of real number)

a ×  b  ∈     R 

(ii) Associative Law multiplication

∀   a,  b,   c  ∈   R   (for all a,   b,    c   is   a “part” of real number)

Such that 

a  ×   (b    ×    c)   = (a  ×   b)    ×    c

(iii) Multiplicative Identity

∀    a    ∈     R   And ∃  (there exist) 1  ∈   R 

Such that 

a  × 1   =    1   ×   a    =    a

1 is called the multiplicative identity of real number

(iv) multiplicative Inverse

∀  a (≠  0)   ∈     R   And ∃  (there exist)   a ‾¹  ∈   R  

Such That 

 a  ×  a ‾¹    = a ‾¹  ×   a  =  1    (a ‾¹ is also written as 1  /   a)

(v) Commutative law of multiplication 

∀   a,  b  ∈   R   (for all a,   b is   a part of real number)

Such that

a  ×   b  =    b    ×  a 

RELATED POST